skip to primary navigation skip to content
 

 

You are not currently logged in

SPRI library catalogue

View a record

Please note: You are viewing the legacy database of the Scott Polar Research Institute Library catalogue. It is no longer being updated, so does not reliably reflect our current library holdings.

Please search for material in iDiscover for up-to-date information about the library collection.


Record #200519:

Surface wind speed prediction in the Canadian Arctic using non-linear machine learning methods / Zheng Zeng, and 4 others.

Title: Surface wind speed prediction in the Canadian Arctic using non-linear machine learning methods / Zheng Zeng, and 4 others.
Author(s): Zeng, Zheng.
Date: 2011.
Publisher: [London]: Taylor and Francis
Abstract: Discusses use of non-linear machine learning methods (Bayesian neural network (BNN) and support vector regression (SVR)) in investigation of October-March wind speed forecasting at Clyde River and Paulatuk meteorological stations. By comparison with multiple linear regression method (MLR), BNN and SVR showed slightly better high-wind forecast scores at Clyde River but not at Paulatuk.
Notes:

Offprint: Atmosphere-Ocean. Vol. 49, no. 1.

Keywords: 519.2 -- Statistical methods.
551.5 -- Meteorology.
551.506 -- Meteorological data.
551.509 -- Weather forecasts.
551.509.3 -- Weather forecasting, bases and methods.
551.55 -- Wind and air turbulence.
551.555 -- Winds of special localities.
D -- Atmospheric sciences.
(*3) -- Arctic regions.
(*41) -- Canada.
(*411) -- Canadian Western Arctic.
(*462) -- Baffin Island.
Location(s): SCO: SPRI-PAM: (*41) : 551.55
SPRI record no.: 200519

MARCXML

LDR 01733nam#a2200000#a#4500
001 SPRI-200519
005 20220929122227.0
007 ta
008 220929s2011####enkab##|#s2##|0||#0#eng#d
035 ## ‡aSPRI-200519
040 ## ‡aUkCU-P‡beng‡eaacr
100 1# ‡aZeng, Zheng.
245 10 ‡aSurface wind speed prediction in the Canadian Arctic using non-linear machine learning methods /‡cZheng Zeng, and 4 others.
260 ## ‡a[London] :‡bTaylor and Francis,‡c2011.
300 ## ‡ap. 22-31 :‡bill., diags., maps.
490 0# ‡aAtmosphere-Ocean
500 ## ‡aOffprint: Atmosphere-Ocean. Vol. 49, no. 1.
520 3# ‡aDiscusses use of non-linear machine learning methods (Bayesian neural network (BNN) and support vector regression (SVR)) in investigation of October-March wind speed forecasting at Clyde River and Paulatuk meteorological stations. By comparison with multiple linear regression method (MLR), BNN and SVR showed slightly better high-wind forecast scores at Clyde River but not at Paulatuk.
530 ## ‡aAlso issued online ‡uurn:doi:10.1080/07055900.2010.549102‡uhttps://dx.doi.org/10.1080/07055900.2010.549102
650 07 ‡a519.2 -- Statistical methods.‡2udc
650 07 ‡a551.5 -- Meteorology.‡2udc
650 07 ‡a551.506 -- Meteorological data.‡2udc
650 07 ‡a551.509 -- Weather forecasts.‡2udc
650 07 ‡a551.509.3 -- Weather forecasting, bases and methods.‡2udc
650 07 ‡a551.55 -- Wind and air turbulence.‡2udc
650 07 ‡a551.555 -- Winds of special localities.‡2udc
650 07 ‡aD -- Atmospheric sciences.‡2local
651 #7 ‡a(*3) -- Arctic regions.‡2udc
651 #7 ‡a(*41) -- Canada.‡2udc
651 #7 ‡a(*411) -- Canadian Western Arctic.‡2udc
651 #7 ‡a(*462) -- Baffin Island.‡2udc
852 7# ‡2camdept‡bSCO‡cSPRI-PAM‡h(*41) : 551.55‡9Create 1 item record‡0Migrate
916 ## ‡a146556 -- 2012/08/24 -- AK
917 ## ‡aUnenhanced record from Muscat, imported 2019
948 3# ‡a20220929 ‡bAK